Slik bidrar lakseoppdrett til utvikling av resistens hos lakselus – og slik kan det unngås

Lakselus kan raskt tilpasse seg nye utfordringer, noe lakseoppdrettsnæringen har kunnet observere de siste tiårene. Mange kjemikalier som brukes til å behandle luseinfisert laks, har blitt ineffektive som følge av at lusen blir resistente mot disse. Etter hvert som nye lusemidler og andre behandlinger blir tilgjengelige, er det ekstremt viktig at oppdrettsnæringen vurderer om resistens kan oppstå, og hvilke tiltak man kan treffe for å forhindre dette. Da er det nødvendig å ha en bedre forståelse av hvordan resistens mot lusemidler utvikles og sprer seg på tvers av nettverk av lakseoppdrettsanlegg.
Forskere fra University of Melbourne, Nofima, Havforskningsinstituttet og University of Sydney har utviklet en ny datamodell som simulerer evolusjonsdynamikken hos lakselus. Modellen er beskrevet i den nye artikkelen «A metapopulation model reveals connectivity-driven hotspots in treatment resistance evolution in a marine parasite», som er publisert i ICES Journal of Marine Science.
Modellering av resistens
Denne modellen simulerer lus som infesterer over 500 lakseoppdrettssteder over hele Sør-Norge. Den viser hvordan lusene formerer seg i oppdrettsanlegg, sprer seg til andre oppdrettsanlegg via havstrømmene (her tar modellen utgangspunkt i data fra Havforskningsinstituttets modell for lusespredning) og utvikler resistens mot lusemiddelbehandlinger. For å teste modellen simulerte forfatterne lus som utvikler resistens mot azametifos – et av de kjemiske lusemidlene som brukes i oppdrettsnæringen, som det nå er utbredt resistens mot. Resultatene deres stemmer godt overens med det vi vet i dag om resistens mot azametifos: På bare 10 år gikk genet som gir resistens, fra å være svært sjeldent i lusepopulasjonen, til å bli svært utbredt.
Modellresultatene belyser sammenhengen mellom hvor regelmessig oppdrettsanleggene ble behandlet med azametifos, og hvor raskt det ble utviklet resistens. Jo oftere et anlegg brukte denne behandlingen, jo mer sannsynlig var det at lus med det resistente genet overlevde, formerte seg og overførte genet til neste generasjon. Og etter hvert som lusepopulasjonen i et anlegg ble mindre mottakelige for kjemikaliet, måtte behandlingen gjentas oftere for å holde luseproblemet under kontroll – noe som akselererte utviklingen ytterligere.
Evolusjonære «hotspots»
Interessant nok var det et tydelig geografisk mønster for resistensutviklingen – det vil si at lusene utviklet resistens med ulik hastighet i ulike deler av Norge. Dette skjedde raskest i den sørvestlige regionen, rundt Hardangerfjorden, før det spredte seg nordover langs kysten (se figuren). Forfatterne beskriver dette som en «evolusjonær hotspot». Ved å identifisere slike evolusjonære hotspots vet forskerne i hvilke områder det er viktigst å overvåke og treffe tiltak mot utvikling av resistens.
I modellen ble de geografiske mønstrene for utvikling av resistens hos lusene påvirket av hvor sannsynlig det var at luselarver ble overført fra ett anlegg til et annet. Resistens ble utviklet raskere i områder hvor anleggene lå tett, og hvor havstrømmene bidro til overføring av lakselus fra ett anlegg til det neste. Dette skyldes at høy overføring av lus mellom anleggene fører til høyere infesteringsgrad, og dertil flere behandlinger med lusemiddel. Det gjorde det også lettere for resistente gener å spre seg til nye områder. Den evolusjonære hotspoten i Hardangerfjorden er en region med mange anlegg som ligger tett. Etter hvert som laksenæringen vokser, blir det avgjørende å velge plasseringen av nye anlegg med omhu.
Alternative strategier for bekjempelse av lakselus
Studien peker også på behovet for alternative metoder for lusebekjempelse som er vanskeligere for lusen å tilpasse seg. For eksempel undersøker CrispResist-prosjektet (finansiert av Fiskeri- og havbruksnæringens forskningsfinansiering) potensialet for å bruke genredigering til å gi atlantisk laks høy eller full resistens mot lakselus. Forfatterne forteller at modellen deres også kan bidra til å velge effektive strategier som kan brukes for å implementere disse nye teknologiene. Riktig strategivalg vil begrense lusens evne til å utvikle seg og overvinne de genetiske resistensmekanismene som introduseres i vertspopulasjonen for atlantisk laks.
Datamodellene kan kjøre utallige ulike scenarier over store geografiske områder og lange tidshorisonter som ellers ikke ville kunne testes eksperimentelt. Dersom lusen kan tilpasse seg de nye metodene for lusebekjempelse (som genredigering av laks), vil det å bruke modeller for å forutsi lusens evolusjonære responser kunne gjøre det mulig å finne måter å bremse – eller stoppe – spredningen av resistens.
Forfatterne håper at dette er det første av mange bruksområder for slike modeller for å forstå hvordan lusene reagerer på behandling i regional skala. Denne kunnskapen kan integreres i behandlingsregimene i oppdrettsanleggene for å sikre at nye behandlingsteknologier forblir effektive også på lang sikt.
Artikkelen «A metapopulation model reveals connectivity-driven hotspots in treatment resistance evolution in a marine parasite» er tilgjengelig på: https://doi.org/10.1093/icesjms/fsac202
Nøkkelord
Kontakter
Reidun Lilleholt KraugerudKommunikasjonsleder Akvakultur
Tel:48197382reidun.lilleholt@nofima.noNicholas RobinsonSeniorforskerNofima - avd. Avl og genetikk
Nick Robinson er seniorforsker i Nofima, og prosjektleder for flere internasjonale prosjekter innen genetikk og akvakultur. Han jobber fra Melbourne, så svarer vanligvis på e-post sent om kvelden eller før kl 10 norsk tid.
Bilder




Lenker
Om Nofima
Nofima er et ledende næringsrettet forskningsinstitutt som driver forskning og utvikling for akvakulturnæringen, fiskerinæringen og matindustrien.
Vi leverer internasjonalt anerkjent forskning og løsninger som gir næringslivet konkurransefortrinn langs hele verdikjeden.
Nofima AS har hovedkontor i Tromsø, og forskningsvirksomhet i Bergen, Stavanger, Sunndalsøra, Tromsø og på Ås.
Instituttet ble etablert 1. januar 2008 og har om lag 390 ansatte
Følg pressemeldinger fra Nofima
Registrer deg med din e-postadresse under for å få de nyeste sakene fra Nofima på e-post fortløpende. Du kan melde deg av når som helst.
Siste pressemeldinger fra Nofima
Fenalår er en unik delikatesse med store smaksforskjeller14.4.2025 07:00:00 CEST | Pressemelding
Fenalår er mer enn et tradisjonsrikt produkt – det er en smakfull del av Norges kulturarv. Sensoriske analyser utført av Nofimas profesjonelle smaksdommere avslører store variasjoner i smak og tekstur mellom fenalår fra ulike produsenter.
Sensorer kan «se» hvor søte tomatene er9.4.2025 07:00:00 CEST | Pressemelding
Det er en klar forventning om at dyprøde kirsebærtomater smaker søtt og frisk, men slik er det ikke alltid. Det gir misfornøyde kunder, som kanskje velger en annen tomattype nesten gang.
Bakterier i fiskens nese kan gi viktige svar om artenes overlevelse i havet4.4.2025 08:00:00 CEST | Pressemelding
I en banebrytende studie har forskere avdekket hvordan klimaendringer kan påvirke bakteriesamfunnene i fiskens nese. Dette kan ha stor betydning for fiskens overlevelsesevne i et varmere hav.
Fish nose bacteria may hold clues to marine species survival4.4.2025 07:30:00 CEST | Press release
In a groundbreaking study, scientists have revealed how climate change might influence the bacterial communities living in fish noses - a previously unexplored frontier that could have implications for fish survival in warming oceans.
Fem sekunder unna å uskadeliggjøre drapsmaneten4.4.2025 07:00:00 CEST | Pressemelding
Perlesnormaneten dreper millioner av norske oppdrettsfisk og kan enkelte år drive oppdrettsnæringen til fortvilelse. Løsningen kan være bare fem sekunder unna.
I vårt presserom finner du alle våre siste pressemeldinger, kontaktpersoner, bilder, dokumenter og annen relevant informasjon om oss.
Besøk vårt presserom