
Muon g-2 doubles down with latest measurement, explores uncharted territory in search of new physics
Scientists working on Fermilab’s Muon g-2 experiment released the world’s most precise measurement yet of the anomalous magnetic moment of the muon, bringing particle physics closer to the ultimate showdown between theory and experiment that may uncover new particles or forces.
Batavia, IL, Aug. 10, 2023 (GLOBE NEWSWIRE) -- Physicists now have a brand-new measurement of a property of the muon called the anomalous magnetic moment that improves the precision of their previous result by a factor of 2.
An international collaboration of scientists working on the Muon g-2 experiment at the U.S. Department of Energy’s Fermi National Accelerator Laboratory announced the much-anticipated updated measurement on Aug. 10. This new value bolsters the first result they announced in April 2021 and sets up a showdown between theory and experiment over 20 years in the making.
“We’re really probing new territory. We’re determining the muon magnetic moment at a better precision than it has ever been seen before,” said Brendan Casey, a senior scientist at Fermilab who has worked on the Muon g-2 experiment since 2008.
Physicists describe how the universe works at its most fundamental level with a theory known as the Standard Model. By making predictions based on the Standard Model and comparing them to experimental results, physicists can discern whether the theory is complete — or if there is physics beyond the Standard Model.
Muons are fundamental particles that are similar to electrons but about 200 times as massive. Like electrons, muons have a tiny internal magnet that, in the presence of a magnetic field, precesses or wobbles like the axis of a spinning top. The precession speed in a given magnetic field depends on the muon magnetic moment, typically represented by the letter g; at the simplest level, theory predicts that g should equal 2.
The difference of g from 2 — or g minus 2 — can be attributed to the muon’s interactions with particles in a quantum foam that surrounds it. These particles blink in and out of existence and, like subatomic “dance partners,” grab the muon’s “hand” and change the way the muon interacts with the magnetic field. The Standard Model incorporates all known “dance partner” particles and predicts how the quantum foam changes g. But there might be more. Physicists are excited about the possible existence of as-yet-undiscovered particles that contribute to the value of g-2 — and would open the window to exploring new physics.
The new experimental result, based on the first three years of data, announced by the
Muon g-2 collaboration is:
g-2 = 0.00233184110 +/- 0.00000000043 (stat.) +/- 0.00000000019 (syst.)
The measurement of g-2 corresponds to a precision of 0.20 parts per million. The Muon g-2 collaboration describes the result in a paper that they submitted today to Physical Review Letters.
With this measurement, the collaboration has already reached their goal of decreasing one particular type of uncertainty: uncertainty caused by experimental imperfections, known as systematic uncertainties.
“This measurement is an incredible experimental achievement,” said Peter Winter, co-spokesperson for the Muon g-2 collaboration. “Getting the systematic uncertainty down to this level is a big deal and is something we didn’t expect to achieve so soon.”
While the total systematic uncertainty has already surpassed the design goal, the larger aspect of uncertainty — statistical uncertainty — is driven by the amount of data analyzed. The result announced today adds an additional two years of data to their first result. The Fermilab experiment will reach its ultimate statistical uncertainty once scientists incorporate all six years of data in their analysis, which the collaboration aims to complete in the next couple of years.
To make the measurement, the Muon g-2 collaboration repeatedly sent a beam of muons into a 50-foot-diameter superconducting magnetic storage ring, where they circulated about 1,000 times at nearly the speed of light. Detectors lining the ring allowed scientists to determine how rapidly the muons were precessing. Physicists must also precisely measure the strength of the magnetic field to then determine the value of g-2.
The Fermilab experiment reused a storage ring originally built for the predecessor Muon g-2 experiment at DOE’s Brookhaven National Laboratory that concluded in 2001. In 2013, the collaboration transported the storage ring 3,200 miles from Long Island, New York, to Batavia, Illinois. Over the next four years, the collaboration assembled the experiment with improved techniques, instrumentation and simulations. The main goal of the Fermilab experiment is to reduce the uncertainty of g-2 by a factor of four compared to the Brookhaven result.
“Our new measurement is very exciting because it takes us well beyond Brookhaven’s sensitivity,” said Graziano Venanzoni, professor at the University of Liverpool affiliated with the Italian National Institute for Nuclear Physics, Pisa, and co-spokesperson of the Muon g-2 experiment at Fermilab.
In addition to the larger data set, this latest g-2 measurement is enhanced by updates to the Fermilab experiment itself. “We improved a lot of things between our first year of taking data and our second and third year,” said Casey, who recently finished his term as co-spokesperson with Venanzoni. “We were constantly making the experiment better.”
The experiment was “really firing on all cylinders” for the final three years of data-taking, which came to an end on July 9, 2023. That’s when the collaboration shut off the muon beam, concluding the experiment after six years of data collection. They reached the goal of collecting a data set that is more than 21 times the size of Brookhaven’s data set.
Physicists can calculate the effects of the known Standard Model “dance partners” on muon g-2 to incredible precision. The calculations consider the electromagnetic, weak nuclear and strong nuclear forces, including photons, electrons, quarks, gluons, neutrinos, W and Z bosons, and the Higgs boson. If the Standard Model is correct, this ultra-precise prediction should match the experimental measurement.
Calculating the Standard Model prediction for muon g-2 is very challenging. In 2020, the Muon g-2 Theory Initiative announced the best Standard Model prediction for muon g-2 available at that time. But a new experimental measurement of the data that feeds into the prediction and a new calculation based on a different theoretical approach — lattice gauge theory — are in tension with the 2020 calculation. Scientists of the Muon g-2 Theory Initiative aim to have a new, improved prediction available in the next couple of years that considers both theoretical approaches.
The Muon g-2 collaboration comprises close to 200 scientists from 33institutions in seven countries and includes nearly 40 students so far who have received their doctorates based on their work on the experiment. Collaborators will now spend the next couple of years analyzing the final three years of data. “We expect another factor of two in precision when we finish,” said Venanzoni.
The collaboration anticipates releasing their final, most precise measurement of the muon magnetic moment in 2025 — setting up the ultimate showdown between Standard Model theory and experiment. Until then, physicists have a new and improved measurement of muon g-2 that is a significant step toward its final physics goal.
The Muon g-2 experiment is supported by the Department of Energy (US); National Science Foundation (US); Istituto Nazionale di Fisica Nucleare (Italy); Science and Technology Facilities Council (UK); Royal Society (UK); European Union’s Horizon 2020; National Natural Science Foundation of China; MSIP, NRF and IBS-R017-D1 (Republic of Korea); and German Research Foundation (DFG).
Fermilab is America’s premier national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance LLC. Visit Fermilab’s website at https://www.fnal.gov and follow us on Twitter @Fermilab.
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://science.energy.gov.
Attachments
To view this piece of content from www.globenewswire.com, please give your consent at the top of this page.To view this piece of content from ml.globenewswire.com, please give your consent at the top of this page.
About GlobeNewswire by notified
GlobeNewswire by notified is one of the world's largest newswire distribution networks, specializing in the delivery of corporate press releases financial disclosures and multimedia content to the media, investment community, individual investors and the general public.
Subscribe to releases from GlobeNewswire by notified
Subscribe to all the latest releases from GlobeNewswire by notified by registering your e-mail address below. You can unsubscribe at any time.
Latest releases from GlobeNewswire by notified
Iveco Group signs a 150 million euro term loan facility with Cassa Depositi e Prestiti to support investments in research, development and innovation11.6.2024 12:00:00 CEST | Press release
Turin, 11th June 2024. Iveco Group N.V. (EXM: IVG), a global automotive leader active in the Commercial & Specialty Vehicles, Powertrain and related Financial Services arenas, has successfully signed a term loan facility of 150 million euros with Cassa Depositi e Prestiti (CDP), for the creation of new projects in Italy dedicated to research, development and innovation. In detail, through the resources made available by CDP, Iveco Group will develop innovative technologies and architectures in the field of electric propulsion and further develop solutions for autonomous driving, digitalisation and vehicle connectivity aimed at increasing efficiency, safety, driving comfort and productivity. The financed investments, which will have a 5-year amortising profile, will be made by Iveco Group in Italy by the end of 2025. Iveco Group N.V. (EXM: IVG) is the home of unique people and brands that power your business and mission to advance a more sustainable society. The eight brands are each a
DSV, 1115 - SHARE BUYBACK IN DSV A/S11.6.2024 11:22:17 CEST | Press release
Company Announcement No. 1115 On 24 April 2024, we initiated a share buyback programme, as described in Company Announcement No. 1104. According to the programme, the company will in the period from 24 April 2024 until 23 July 2024 purchase own shares up to a maximum value of DKK 1,000 million, and no more than 1,700,000 shares, corresponding to 0.79% of the share capital at commencement of the programme. The programme has been implemented in accordance with Regulation No. 596/2014 of the European Parliament and Council of 16 April 2014 (“MAR”) (save for the rules on share buyback programmes set out in MAR article 5) and the Commission Delegated Regulation (EU) 2016/1052, also referred to as the Safe Harbour rules. Trading dayNumber of shares bought backAverage transaction priceAmount DKKAccumulated trading for days 1-25478,1001,023.01489,100,86026:3 June 20247,0001,050.597,354,13027:4 June 20245,0001,055.705,278,50028:6 June20243,0001,096.273,288,81029:7 June 20244,0001,106.174,424,68
Landsbankinn hf.: Offering of covered bonds11.6.2024 11:16:36 CEST | Press release
Landsbankinn will offer covered bonds for sale via auction held on Thursday 13 June at 15:00. An inflation-linked series, LBANK CBI 30, will be offered for sale. In connection with the auction, a covered bond exchange offering will take place, where holders of the inflation-linked series LBANK CBI 24 can sell the covered bonds in the series against covered bonds bought in the above-mentioned auction. The clean price of the bonds is predefined at 99,594. Expected settlement date is 20 June 2024. Covered bonds issued by Landsbankinn are rated A+ with stable outlook by S&P Global Ratings. Landsbankinn Capital Markets will manage the auction. For further information, please call +354 410 7330 or email verdbrefamidlun@landsbankinn.is.
Relay42 unlocks customer intelligence with a new insights and reporting module, powered by Amazon QuickSight11.6.2024 11:00:00 CEST | Press release
AMSTERDAM, June 11, 2024 (GLOBE NEWSWIRE) -- Relay42, a leading European Customer Data Platform (CDP), is leveraging Amazon QuickSight to power its new real-time customer intelligence, reporting, and dashboard module. Harnessing the breadth and quality of customer data, the new Insights module empowers marketing teams to dive deep into customer behaviors and gain invaluable insights into the performance of their marketing programs across all online, offline, paid, and owned marketing channels. Preview of the Relay42 Insights module, in pre-beta version Key capabilities of the Relay42 Insights module include: Deep insights into customer behaviors: With the Relay42 Insights module, marketers can ask unlimited questions about their data and gain a deeper understanding of how to serve their customers more effectively. Simplicity with AI-powered querying: Marketers can use artificial intelligence to query their data using natural language search, reducing the reliance on data scientists. Us
Metasphere Labs Announces X Spaces Event on the Topic of Green Bitcoin Mining and Sound Money for Sustainability11.6.2024 10:30:00 CEST | Press release
VANCOUVER, British Columbia, June 11, 2024 (GLOBE NEWSWIRE) -- Metasphere Labs Inc. (formerly Looking Glass Labs Ltd., "Metasphere Labs" or the "Company") (Cboe Canada: LABZ) (OTC: LABZF) (FRA: H1N) is thrilled to announce an engaging Twitter Spaces event on Green Bitcoin mining, energy markets, and sustainability on July 3, 2024 at 2 p.m. ET. Follow us on X at MetasphereLabs for updates and to join the event. What We'll Discuss Bitcoin Mining Basics: Understand the fundamentals of Bitcoin mining.Energy Market Dynamics: Explore how Bitcoin mining interacts with energy markets.Sustainable Innovations: Learn about our efforts to promote sustainability in Bitcoin mining.Sound Money: Discover how tamper-proof currency can enhance stability.Efficient Payment Rails: See how fast, neutral payment systems support humanitarian projects.Carbon Footprint: Compare Bitcoin's environmental impact with traditional banking. "We're excited to host this event and dive into the critical topics of Bitcoin