

MEASUREMENT THAT MATTERS

CJ SELECTA'S SOY PROTEIN CONCENTRATE CARBON FOOTPRINT

Patricia Sugui, PhD. Bergen | March 5^{TH.} 2025

GOALS

- Provide the **accurate** value for SPC carbon footprint
- Ensure Accountability and Transparency
- Sensitivity analysis: Primary data vs Ecoinvent database
- Measure the real scenario of CJ Selecta operations
- Take strategic decisions
- Promote CLIMATE RESILIENCE

CJ Selecta STUDY

Encourage the adoption of best agricultural practices to reduce greenhouse gas (GHG) emissions at the farm level and throughout the value chain

Functional unit: 1 ton SPC

3	
1	***
SQ	* *

PEFCR Guidelines for animal feed Primary data collection from 100% of farms

Economic Allocation

Selecta

STANDARDS & SCOPE

OpenLCA software version 2.0

Impact assessment method "IPCC 2021 GWP 100 years

MAPBIOMAS

Ecoinvent database version 3.10

PAS 2050-1:2012

ISO 14067

BORDERS OF THE SYSTEM

Borders of the systems for the production of SPC

Selecta

INDUSTRIAL STAGE

Major contribution

ELECTRIC POWER

ENERGY -STEAM INPUTS IN THE PRODUCTION OF SPC, LECITHIN AND REFINED OIL

 ${}^{\bullet}$

The energy used comes from the boiler, which generates electricity and steam used in the processes

AGRICULTURAL STAGE

Crop Season: 2020, 2021, 2022, 2023

Farmer assessment:

TECHNOLOGY PROFILE

- No-Till Farming
- Second crop planting
- Integrated Pest Control
- Use of Inoculants
- Fuel consumption
- Technology in Pesticide Application

- Technologies in Fertilizer
- **Biological pesticides**
- Biofertilizers
- Irrigation

Carbon footprints of products (tCO₂e/t of product)

: With LUC

0.617

SPC NGMO (tCO₂eq/t)

Without LUC

:

--

0.388

CJ Selecta

Emissions per each stage of life cycle and impact category

With LUC

Emissions per each stage of life cycle and impact category

	tCO ₂ e			
ltem	Biogenic Fossil		Land Use Change	
Agricultural	0.001	0.273	0.224	
Industrial	0.001	0.113	0.005	
Sum	0.002	0.386	0.229	

TOTAL

0.617

VERIFICATION STATEMENT

Bureau Veritas Certification, established at Avenida Angélica, 2546 Floors 14th, 15th, and 16th, Consolação, São Paulo/SP, registered in the National Registry of Legal Entities under number 72.368.012/0002-65, hereby declares that CJ SELECTA S.A., established at Av. Rondon Pacheco, 4600, Uberlândia/MG, Zip Code. 38405-142, registered in the National Registry of Legal Entities under number 00.969.790//0001-18, is authorized to publish in all its titles and websites the excerpt of the Verification Statement as follows:

"Bureau Veritas Certification, based on the processes and procedures described in its Verification Report, declares that for the methodology described in the document "Pegada de carbono do SPC (Soy Protein Concentrate), do õleo refinado e da lecitina" of CJ SELECTA S.A., there is no evidence that it is not materially correct, is nota fair representation of the data and information on the Product's Carbon Footprint, or has not been prepared in accordance with the specifications of NBR ISO 14067:2023".

Scope Verified:

- · Products: Soy Protein Concentrate (SPC), refined oil, and lecithin;
- Reference year: July 1, 2022, to June 30, 2023;
- Manufacturing Process:
 - Soya protein concentrate: Reception and preparation of soybeans, hexane extraction, desolventisation of soybeans, roasting;
 - Refined oil: Reception and preparation of soybeans, hexane extraction, refining;
 - o Lecithin: Reception and preparation of soybeans, hexane extraction, degumming, drying;
- · Boundary: cradle-to-gate;
- Modeling: attributional;
- · Declared units: 1 ton of product;
- Data sources:
 - Agricultural phase: Primary data on input consumption collected through a questionnaire applied to a representative sample of producers. Emissions from land-use change and fertilizer application were estimated using secondary data (BRLUC, MapBiomas, ICVCalc);
 - Industrial phase: Primary data on input consumption and waste generation provided by the company itself;
 - Transportation of inputs: Distances estimated through the supplier's location using Google Maps for road transportation and Sea Rates for maritime transportation. Transport emissions and infrastructure impacts were estimated based on econvent 3.10;
- · Impact assessment method: IPCC 2021 GWP 100a;
- Software: OpenLCA v.2.0;
- Database: ecoinvent 3.10.

BUREAU
VERITAS
Results:
Table 1. Carbon Foolprint of Products (KC02et de product).
Produtos Non-GMO/ (LC02e/L)
SPC 0.617

Verification conclusions:

CJ Selecta S.A. and GSS submitted the document "Pegada de carbono do SPC (Soy Protein Concentrate), do óleo refinado e da lecitina" to Bureau Veritas Certification for verification. This CFP study was developed to calculate the potential contribution of three CJ Selecta products to global warming in kg of CO2 equivalent.

The document was reviewed by Bureau Verification team based on the NBR ISO 14067:2023 standard and the recommendations of the RCP "PEFCR Food for producing animals". It was confirmed that the methodology meets the requirements specified in Clause 7.3 of NBR ISO 14067:2023 "Information necessary for the CFP study report", in addition to complying with the requirements of the RCP "PEFCR Food for producing animals" with regard to the objectives for assessing the impact of climate change. Conclusions can be seen in Table 1 below:

Information Required for CFP Study Report	Verification conclusions
a) functional or claimed unit and reference flow	Declared units are shown in Table 1.
b) system limit	The Organization has restricted the limit of its CFP quantification fron cradle-to-gate (Section 1). Justification for the adoption of this limit was considered sufficient.
c) list of important elementary processes	Elementary processes were presented in Figure 1 (Section 2) and the main elementary processes in terms of contribution to global warming impact were explained for all products in Section 5 (Tables 21, 23, 25, 27, 28 and 31).
 d) data collection information, including data sources 	Information is contained in Section 3 in a detailed and clear manner.
e) list of GHGs taken into account	Information present in "Table A" of the Annexes.
f) selected characterization factors	Information present in "Table A" of the Annexes.
g) cut criteria and selected cuts	The Organization did not use any criteria or cut-off rules for the analysis of the product system. All identified processes were included. This premise was clearly defined in the document.
h) selected allocation procedures	The allocation procedures were detailed in Sections 2 and 3 of the report.
 GHG emission time and removals, if applicable; 	The methodology provides for the consideration of emissions resulting from one year of the product systems in operation. The IPCC method used to assess the impact on Climate Change considers a time horizon of 100 years.
j) description of the data, including — decisions regarding data, and — evaluation of data quality;	The Organization described the data and decisions for the construction of the CFP study inventory in Section 3.

BV Verification Statement - Rev.01 September 06, 2024

LAND USE CHANGE

LAND USE

Annual crop

Native Vegetation

Pasture

Land Use Changesin 2021

Areas with CO₂ emissions

A) Land use in 2001

Selecta

B) Land use in 2021 (end polygons with changes)

C) Polygons with CO₂ emissions

LAND USE

CHANGE

XK////

Land use 20 Years Satelite analyses of 100% of NGMO farms Selecta

CT

~700,000ha

FARM NUMBE	ÁREA (H 👻	UF 💌	MUNICIPALITY -	Soil NET EMISSION (tCO ₂)	VEGETATION EMISSION(tCO2)	VEGETATAION REMOVALS (tCO ₂)	TOTAL NET EMISSION (tCO ₂)
83	137	MG	Água Comprida	556	1.330	-40	1.847
84	363	MG	Água Comprida	3.607	8.304	-1.135	10.775
85	13	MG	Água Comprida	-3	33	-62	-32
86	1.273	MG	Araguari	361	2.156	-5.644	-3.127
87	193	MG	Araguari	-24	292	-1.351	-1.083
88	697	MG	Araguari	144	1.627	-824	947
89	22	MG	Araguari	5	22	0	28
90	242	MG	Araguari	337	2.347	170	2.513
<mark>9</mark> 1	668	MG	Araguari	20	746	-880	-115
92	305	MG	Araguari	55	329	-907	-523
93	75	MG	Araxá	236	1.171	-728	680
94	32	MG	Bonfinópolis de Minas	0	0	0	0
95	346	MG	Bonfinópolis de Minas	122	311	-508	-75
96	32	MG	Bonfinópolis de Minas	0	0	0	0
97	309	MG	Cabeceira Grande	2.038	6.790	-374	8.454
98	174	MG	Cabeceira Grande	115	528	-516	127
99	89	MG	Cabeceira Grande	257	1.246	-476	1.027
100	49	MG	Cabeceira Grande	11	50	-1	61
101	383	MG	Cabeceira Grande	22	435	-498	-42
102	0	MG	Chapada Gaúcha	1	2	0	2

Source: Garofalo et al. 2022

FIL

SOIL HEALTH ANTAGORDENSE FARM MINAS GERAIS State - Brazil

Cover Crops Santa Helena Farm

SÂO PAULO - Brazil

FINAL CONSIDERATIONS

 The study reveals that the agricultural stage accounts for most of the emissions

80.7%

due to the burning of fuel in agricultural machinery and LUC (Land Use Change).

• A third-party conducted sensitivity analysis revealed notable discrepancies in results for the agricultural stage. This analysis compared the primary data collected from soybean producers to that from the Ecoinvent database and LUC data sourced from satellite images.

These findings highlight the critical significance of collecting primary data for accurate assessments.

NGMO

FINAL CONSIDERATIONS

FUTURE DIRECTIONS

Encourage the adoption of best agricultural practices to reduce greenhouse gas (GHG) emissions at the farm level and throughout the value chain

Implementing regenerative agriculture practices can lead to further reductions in carbon emissions and enhanced carbon sequestration.

MEASUREMENT THAT METTERS

www.cjselecta.com.br

PATRICIA SUGUI

patricia.sugui@cj.net

NORTH ATLANTIC SEAF OD FORUM